http://chromatographyonline.findanalytichem.com/lcgc/Scientists-Re-evaluate-GCndashMS-Results-from-Mars/ArticleStandard/Article/detail/721990When organic compounds and the soil were mixed with magnesium perchlorate and heated, nearly all the organics decomposed to water and carbon dioxide, leaving only trace organics. How do you think this may affect the analytical techniques future missions use to search for organic compounds?
McKay: For future missions, the presence of perchlorates is going to be a real problem. Every GC–MS or MS flown in space has relied on thermal processing of the sample for soil analysis. We will have to develop methods that do not rely on this for future Mars missions.
Reinterpreting the results suggested 1.5–6.5 ppm of organic carbon may have been present at landing site 1, and 0.7–2.6 ppm at site 2 — both more than 1000x the initial findings. How do you think this information could influence future Mars missions?
Navarro-Gonzalez: The Viking GC–MS team concluded that the Martian soil was deficient in organics at parts-per-billion levels, at about the same levels as those found in the moon. Under these conditions it is not possible to search for evidence of carbon-based life. However, our new interpretation of the Viking GC–MS data suggests that the levels of soil organics is about a thousand times higher than previously thought, at parts per million, making Mars comparable to the driest lands on Earth, like the Atacama Desert, where bacteria strive to survive.